An Introduction to

Richard Ngamita

Tech lead (Refugees United)

Web resources

- R home page: http://www.r-project.org/
- R Archive: http://cran.r-project.org/
- R FAQ (frequently asked questions about R): http://cran.r-project.org/doc/FAQ/R-FAQ.html
- R manuals: http://cran.r-project.org/manuals.html

R programming language is a lot like witchcraft... except instead of spells you have functions.

R, And the Rise of the Best Software Money Can't Buy

Why R?

Installation

Mac Install

http://cran.r-project.org/bin/macosx/

Windows Install

http://cran.r-project.org/bin/windows/base/

Linux Install

http://cran.r-project.org/bin/linux/ubuntu/README

Next, choose the appropriate package for RStudio:

http://www.rstudio.com/ide/download/desktop

The R environment

- R command window (console) or Graphical User Interface (GUI)
 - Used for entering commands, data manipulations, analyses, graphing
 - Output: results of analyses, queries, etc. are written here
 - Toggle through previous commands by using the up and down arrow keys

The R environment

The R workspace

Current working environment

 Comprised primarily of variables, datasets, functions

The R environment

- R scripts
 - A text file containing commands that you would enter on the command line of R

 To place a comment in a R script, use a hash mark (#) at the beginning of the line

Executing simple commands

- The assignment operator <-
- X < 1 assigns the value of 1 to the variable x
- y < -5*x assigns the value of 5 times x (5 in this case) to the variable y
- r <- 2
- area.circle <- pi*r^2
- NOTE: R is case-sensitive (y ≠ Y)

Some tips for getting started in R

- 1. Create a new folder on your hard drive for your current **R** session
- 2. Open **R** and set the working directory to that folder
- 3. Save the workspace with a descriptive name and date
- 4. Open a new script and save the script with a descriptive name and date (Google's R style guide).

R object types

- Vector
- Matrix
- Array
- Data frame
- Function
- List

Vectors and arrays

 <u>Vector</u>: a one-dimensional array, all elements of a vector must be of the same type (numerical, character, etc)

 Matrix: a two-dimensional array with rows and columns

Array: as a matrix, but of arbitrary dimension

- Vectors:
- The "c" command
 - combine or concatenate data
- Data can be character or numeric

$$v1 <- c(1, 15, 26, 4, 4)$$

v2 <- c("Mukene", "Engege", "Angara")

- Vectors:
- Sequences of numbersc()

seq()

years<-c(2006:2014)

x < -seq(0,100,10)

x < -seq(0, 200, length=100)

Arrays: array() matrix()

```
m1 < -array(1:20, dim = c(4,5))
```

m2<-matrix(1:20, ncol=5, nrow=4)

- Arrays:
- Combine vectors as columns or rows cbind()
 rbind()

```
Matrix1 <- cbind(v1, v2)
```

Matrix2 <- rbind(v1, v2)

Data frames

 A data frame is a list of variables of the same length with unique row names

 A collection of variables which share many of the properties of matrices and of lists

 Used as the fundamental data structure by most of R's modeling software

Data frames

 Convert vectors or matrices into a data frame

data.frame()

df1<-data.frame(v1, v2)

df2<-data.frame(matrix1)

Data frames

Editing data frames in spreadsheet-like view

edit()

df2<-edit(df1)

Placing variables in the R search path

 When variables in a data frame are used in R, the data frame name followed by a \$ sign and then the variable name is required

query1<-df1\$v3 > 20

Placing variables in the R search path

Alternatively, the attach() function can be used

```
attach(df1)
query1 <- v3 > 20
detach(df1)
```

Accessing data from an array, vector, or data frame

 Subscripts are used to extract data from objects in R

 Subscripts appear in square brackets and reference rows and columns, respectively

Subscripts

df[3,5]

df[,3]

df[5,]

df[2:5,]

	df1						
		C1	C2	C3	C4	C5	
	R1	25	Mon	56	-45	Cat	_
	R2	2	Tues	84	2	Dog	
	R3	24	Wed	7	15	Dog	
	R4	15	Thurs	56	236	Cat	
	R5	26	Fri	89	6	Cat	
	R6	25	Sat	23	58	Dog	

Queries in R: Common logical arguments

- Second Second
- < Less than
- == Equals
- !x ! Indicates logical negation (not), not x
- x & y Logical and, x and y

I onical or y or y

Queries in R

The use of logical tests

query2 < -df1\$v3 > 20 & df1\$v4 < 30 (&=and)

query2 < -df1\$v3 > 20 | df1\$v4 < 30 (| = or)

Introduction to R functions

 R has many built-in functions and many more that can be downloaded from CRAN sites (Comprehensive R Archive Network)

 User-defined functions can also be created

Introduction to R functions

Common functions

names(): obtain variable names of a df

summary(): summary of all variables in a df

mean(): Mean

var(): Variance

sd(): standard deviation

Introduction to R functions, cont

head(): print first few rows of data frame

sapply() and tapply(): column-wise
summaries

levels(): obtain levels of a character variable

by(): produce summaries by group

Introduction to R functions, cont

tapply(variable, list(group1, group2), mean)

Applies function to each element in ragged arrays

sapply(variable, FUN=)

Applies a function to elements in a list

by(data, INDICES, FUN)

Importing data from Excel

read.table()

```
data.frame.name <- read.table("file path",
    na.strings="NA", header=TRUE)</pre>
```

df1<-read.table("C:\\R\\Example\\datafile1.txt", na.strings="NA", header=TRUE)

read.xlsx(), read.xlsx2(), write.xlsx()

Slow,file, sheetindex etc

Data Munging 70%

read.table()

```
tolower(), toupper()
strsplit() e.g on period "\\."
sapply()
sub(), gsub()
as.Date(), lubridate
merge() like joins in SQL.
Sort(), order() and REGex is KING.
```

Introduction to R loops

Basic syntax:

```
for (i in 1:n){
    some code
}
```

Introduction to R loops

Basic syntax:

```
for (i in 1:n){
    some code
}
```

User-defined functions

```
Function name <- function(x){
    argument }
```

R functions part 2: subset data

subset() function

sub<- subset(data frame, criteria)</pre>

sub1<-subset(cars, mpg == 21)

sub2 < -subset(cars, cyl > 50 & gear == 4)

R functions part 2: subset data

Select specific columns

sub3<-subset(cars, select=c(mpg,disp , hp))</pre>

Introduction to basic graphing

- plot(): A generic function that produces a type of plot that is dependent on the type of the first arguement
- Hist() or density(): Creates a histogram of frequencies
- barplot(): Creates a histogram of values
- boxplot(): Creates a boxplot
- map(): Creates maps

Common high-level functions

```
plot()

plot(x)

plot(x,y) : scatter plot

plot(y~x) : scatter plot
```

Lower-level graphing functions

0

DWOR

Chinook triglyceride levels for three hatcheries

MCCA

RAPH

Lower-level graphing functions

Axis scales and labels

```
xlim=c(0,50)
ylim=c(0,100)
xlab="text"
ylab="text"
main="text"
cex= <1 will make font smaller than
default, >1 will increase font size
```

Lower-level graphing functions

Symbol shapes and colors

High-level graphing (ggplot2)

Sneak peak at more mature graphics in R.

Examples: ggplot2 and lattice.

http://docs.ggplot2.org/current/

Plotting 2 lines.

Get/Set your W/D

Importantly get/set your w/d

```
getwd()
```

setwd()

- Differences Windows machines.

setwd("C:\\Users\\Ngamita\\Downloads")

- Relative vs Absolute paths.

Load data

 Disclaimer: data-set only for this training purpose, delete after this training.

```
file<-
    'https://www.dropbox.com/s/vcnpqzl87e9jhi0/Eng_querie
    s_01_15.csv'

download.file()

why wget not curl?

read.table(), read.csv(), read.csv2()

date()

RAM?
```

Load data

* Exploratory summarize data functions.

```
dim()Summary()attach() and detach()Subset()edit(df) or edit(data.frame())head()quantile()tail()class()str()nrow() ncols()
```

Missing Values

Missing values and NAs

```
complete.cases() # dont forget coma.
is.na()
na.omit() # remove all raws or cases with NA occurrence
any(), all()
UseNA = 'ifany'
```

Data from Questions.

data from questions?

```
# How many sms'es received monthly/quarterly?
# Breakdown of statuses?
# Which months recorded more sms'es than others?
# Which shortcode received more messages than the other?
# Under which short code did we have lots of no matches?
# % duplicates more than 1?
# Under no_match status % duplicates?
# Query word length averages?
# % of gueries - non english?
# classification of queries accordingly agric/news/sports/health/nonsense etc?
# -- > supervised/non-supervised text classification
# Most common keywords used? Wordcloud!!
# What is the lexical diversity per message?
```

Packages(plyr)

Installing Packages

```
install.packages()
installed.packages()
old.packages()
update.packages()
```

- Load Package

```
library(plyr)
require(plyr)
```

Packages(plyr)

- Examples.
- How many times per day do we receive messages? frequency messages per day?
- How many times did each status appear on specific shortcode?
- What total did each shortcode gain in total?
- What was the mean duplicate count in relation to shortcode?

Packages(RmySQL)

- Examples.
- library(RMySQL)
- Use db: world database

Using sqldf? Runs sql like queries in R.

Packages(RGoogleAnalytics)

- Examples.
- Analyzing web traffic with Google Analytics API.

Who's using R?

Recommended Resources.